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SUMMARY

Purpose: How long after starting a new medication must

a patient go without seizures before they can be regarded

as seizure-free? A recent International League Against

Epilepsy (ILAE) task force proposed using a ‘‘Rule of

Three’’ as an operational definition of seizure freedom,

according to which a patient should be considered sei-

zure-free following an intervention after a period without

seizures has elapsed equal to three times the longest pre-

intervention interseizure interval over the previous year.

This rule was motivated in large part by statistical consid-

erations advanced in a classic 1983 paper by Hanley and

Lippman-Hand. However, strict adherence to the statisti-

cal logic of this rule generally requires waiting much

longer than recommended by the ILAE task force. There-

fore, we set out to determine whether an alternative

approach to the Rule of Three might be possible, and

under what conditions the rule may be expected to hold

or would need to be extended.

Methods: Probabilistic modeling and application of Bayes’
rule.

Key Findings: We find that an alternative approach to the

problem of inferring seizure freedom supports using the

Rule of Three in the way proposed by the ILAE in many

cases, particularly in evaluating responses to a first trial of

antiseizure medication, and to favorably-selected epilepsy

surgical candidates. In cases where the a priori odds of

success are less favorable, our analysis requires longer sei-

zure-free observation periods before declaring seizure

freedom, up to six times the average preintervention in-

terseizure interval. The key to our approach is to take into

account not only the time elapsed without seizures but

also empirical data regarding the a priori probability of

achieving seizure freedom conferred by a particular inter-

vention.

Significance: In many cases it may be reasonable to con-

sider a patient seizure-free after they have gone without

seizures for a period equal to three times the preinterven-

tion interseizure interval, as proposed on pragmatic

grounds in a recent ILAE position paper, although in other

commonly encountered cases a waiting time up to six

times this interval is required. In this work we have pro-

vided a coherent theoretical basis for modified criterion

for seizure freedom, which we call the ‘‘Rule of Three-

To-Six.’’
KEY WORDS: Bayes’ rule, ILAE, Epilepsy, Refractory,

Statistical prediction.

Although seizure freedom is always the goal of initiating
antiepileptic drug (AED) therapy in patients with epilepsy,
identifying when this goal has been achieved can be prob-
lematic. A common challenge for epileptologists lies in
determining what constitutes an adequate amount of time
without seizures following an intervention such as the start
of a new medication for a patient to be considered seizure-
free. This determination has important implications for
counseling patients about when to resume risky activities,
and for public policy such as how long patients must go
without seizures before returning to driving. A recent Inter-

national League Against Epilepsy (ILAE) task force pro-
posed that a patient should be considered ‘‘seizure-free’’ in
response to a new antiseizure treatment (e.g., medication or
surgery) once they have gone without a seizure for at least
three times the duration of their longest preintervention
interseizure interval in the preceding 12 months (Kwan
et al., 2009). Inspiration for this proposed working defini-
tion of seizure freedom is credited to a statistical principle
known as the ‘‘Rule of Three,’’ proposed several decades
ago as a generic statistical rule of thumb for reasoning about
‘‘zero numerators,’’ that is, for inferring from the fact that
no adverse events have occurred so far the probability that
an adverse event may yet occur at some future time (Hanley
& Lippman-Hand, 1983; Jovanovic & Levy, 1997). How-
ever, as acknowledged by the ILAE task force, the proposed
application toward the determination of seizure freedom
entails a compromise, dictated by practical considerations
rather than following strictly from the logic embodied in the

Accepted October 26, 2011; Early View publication December 22, 2011.
Address correspondence to M. Brandon Westover, MD, PhD, Wang 7

Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA
02114, U.S.A. E-mail: mwestover@partners.org

1These authors contributed equally to this work.

Wiley Periodicals, Inc.
ª 2011 International League Against Epilepsy

Epilepsia, 53(2):368–376, 2012
doi: 10.1111/j.1528-1167.2011.03355.x

FULL-LENGTH ORIGINAL RESEARCH

368



original statistical formulation of the Rule of Three (Kwan
et al., 2009).

Because the Rule of Three has not to our knowledge been
applied before to the problem of determination of seizure
freedom, and because the rule in its original formulation is
not widely known among epileptologists, our first goal in
this article is to provide an accessible mathematical deriva-
tion and an explanation of its literal meaning and implica-
tions. We shall see that it relies on a type of ‘‘worst case
scenario’’ reasoning which, followed strictly, requires wait-
ing much longer than the period proposed in the ILAE task
force definition of seizure freedom, in some cases for many
years, hence the original Rule of Three apparently requires
modification to be of practical clinical use. Hereafter, we
refer to the original statistical formulation and its attendant
statistico-logical implications as the ‘‘Classical Rule of
Three.’’ Our second goal in this article is to propose a set of
probabilistic considerations that do support the ILAE’s pro-
posed pragmatic adaptation of the Classical Rule of Three,
at least for many cases encountered in clinical practice, thus
placing the rule on more solid theoretical grounds. We dem-
onstrate that for many cases commonly encountered in prac-
tice a waiting period of three times the preintervention
interseizure interval is adequate, whereas in other cases as
long as six interseizure intervals is required. Consequently,
we refer to our final justified-and-extended version of the
Classical Rule of Three, and the attendant probabilistic con-
siderations behind our formulation, as the ‘‘Rule of Three-
To-Six.’’

The fulcrum of our approach is the recognition that
information available before initiating an intervention can
be informative in interpreting the response to an interven-
tion so far, whereas such information is ignored by the
Classical Rule of Three. For example, in medication-naive
adult epilepsy patients, it is well-known that roughly 50–
70% become ‘‘seizure-free’’ in response to AED therapy,
whereas for patients who have already ‘‘failed’’ one to
two previous AEDs, the probability of achieving seizure
freedom with subsequent AED trials is known to be low,
around 5–10% (Kwan & Brodie, 2000, 2001). Similarly,
certain carefully selected patients with lesional epilepsy
can be quoted an approximately 80% probability of
achieving seizure freedom with surgery (McIntosh et al.,
2001). Such preintervention probabilities are routinely
used in counseling patients who are contemplating new
medical or surgical interventions. We therefore propose a
simple statistical model that allows such estimates of the
a priori probability of seizure freedom to be combined,
via Bayes’ rule, with the time without a seizure since
starting medication, to yield an informed estimate of the
probability that a patient will remain seizure-free. This
model provides a principled probabilistic justification for
the ILAE’s proposed working definition of seizure free-
dom, rescuing it from the shortcomings of the Classical
Rule of Three.

Methods

In the derivations given below of the Classical Rule of
Three and our modification of it, we will make the simplify-
ing assumption that seizures occur at random times, with a
patient-specific underlying rate, r, or, equivalently, with an
average interseizure interval of s = 1/r. That is, we assume
the probability that a seizure occurs during any very small
time increment, dt, is constant, and equal to the length of
this interval times the seizure rate, rdt. From this elementary
assumption, an expression can be derived for the probability
that any specified number of seizures N (t) may occur within
a time interval of length t (see Supporting Information),
namely

PrðNðtÞ ¼ kjrÞ ¼ ðrtÞ
ke�rt

k!
;

This mathematical model is known as a Poisson process
(Papoulis, 1984). The notation Pr ðN ðtÞ ¼ kjrÞ is read, the
probability that k seizures occur within an interval of time t,
given that the patient’s underlying seizure rate is r.

In the remainder of this article, we are interested chiefly
in the case in which no seizures occur over a given observa-
tion period following an intervention. More precisely, we
are interested in the probability that no seizures occur over
an interval of length t, hence P ðN ðtÞ ¼ 0jrÞ, or equiva-
lently, in the probability that the time to the next seizure, Dt,
lies beyond the specified interval, Pr ðDt>tjrÞ. Substituting
into the Poisson process equation above, we get simply

Pr ðDt>tjrÞ ¼ P ðNðtÞ ¼ 0jrÞ ¼ ðrtÞ
0e�rt

0!
¼ e�rt:

Hence, if seizure ‘‘arrival times’’ obey a Poisson process
model, then the probability distribution of interseizure inter-
vals is a simple exponential decay function.

Many processes involving recurrent random events can
be reasonably approximated by Poisson process models,
although it must be realized that such models treat the inter-
vals between events as statistically independent, and hence
cannot describe more complex temporal features character-
istic of some cases of epilepsy such as systematic clustering
or diurnal variation, which may play important roles in the
management of some patients’ seizures (Balish et al., 1991;
Haut et al., 2005). The expected effects of deviations from
this simple model on the results of the following analysis
are addressed in the Discussion section and Supporting
Information.

Results

Formulation of the classical rule of three
Figure 1A illustrates a series of random seizure occur-

rence times generated by the Poisson model over a 5-year
period for five hypothetical patients with rates ranging from
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one seizure/week to one seizure/year. Visual inspection of
these examples suggests what statistical analysis confirms:
although seizure-free intervals much longer than a patient’s
average are uncommon, occasional prolonged seizure-free
intervals do occur by chance. Figure 1B further illustrates
this phenomenon and its implications by simulating seizure
occurrences in a single patient over a 5-year period. In this
model, the patient’s initial seizure rate is one seizure per
3 months. Thirty-six months into the simulation, an inter-
vention is initiated, and the patient becomes seizure-free,
that is, the seizure rate in the model is reduced to 0 seizures
per month. Although the patient’s newfound seizure free-
dom seems obvious when considering seizure activity
across the entire 5-year simulation in Fig. 1B, one is chal-
lenged to identify the time point after medication onset at
which seizure freedom has unequivocally been achieved.
This task is particularly difficult in light of the patient’s
rather long seizure-free period at the beginning of the simu-
lation, an interseizure interval that, while much longer than
the patient’s average, is still within the distribution of possi-
ble interseizure intervals. Therefore, the question naturally
arises: What duration of seizure freedom is necessary before
the patient or doctor counseling the patient can conclude,
with reasonable certainty, that the intervention has rendered
the patient seizure-free?

One way to approach this question is to consider a sort of
worst case scenario: suppose that, after beginning an inter-

vention, a patient has gone t months without seizures.
Assuming pessimistically that this period of seizure free-
dom is due simply to chance, what is the maximum rate of
seizures that could plausibly produce a seizure-free period
as long as that observed? We can answer this question by
solving the Poisson model for the maximum rate, r* for
which the occurrence of a seizure-free period of at least t
months has at least a 5% probability. We do this by simply
setting the expression for the interseizure interval probabil-
ity distribution equal to 0.05, that is, setting
Pr ðDt> tjr�Þ¼ e�r

�t¼ 0:05, and then solving for the
desired rate. Taking logarithms and rearranging, we obtain
r� ¼ ln 0:05=t. The logarithm of 0.05 is approximately 3,
hence

r� � 3=t

which is the essential formula underlying the Classical Rule
of Three. The principles involved in this derivation are illus-
trated in Fig. 2, which shows the probability of different in-
terseizure intervals for various underlying seizure rates.
Visual inspection of Fig. 2 confirms that the probability of
going without seizures decays exponentially as a function of
time passed for any given rate of seizures. The seizure-free
interval duration at which the probability of having zero
seizures decays to 5% is marked by a vertical bar. Accord-
ing to this model a patient with an underlying rate of one sei-
zure/month has a 5% probability of going approximately

Figure 2.

Illustration of the statistical reasoning underlying the Rule of

Three as originally formulated. Solid curves show the probabil-

ity of experiencing a period of seizure freedom (interseizure

interval) versus time, for underlying seizure rates of one per 1,

3, 6, 9, or 12 months. The interseizure interval duration for

which the probability drops to 5% (dashed line) is marked. As

shown, this duration is roughly three times the average inter-

seizure interval.

Epilepsia ILAE

A

B

Figure 1.

Illustration of random seizure event times over a 60-month (5-

year) period produced by Poisson models with different seizure

rates. (A) From top to bottom, the rates illustrated are one sei-

zure per: 0.25, 1, 3, 6, or 12 months, respectively. (B) Event

times with an underlying rate of one seizure per 3 months, up

until 36 months, at which time the rate is set equal to zero (e.g.,

due to starting a medication). The seizure-free period

of �15 months near the beginning of the record is due to

chance.

Epilepsia ILAE
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3 months without seizures, whereas someone with an under-
lying rate of one seizure per year frequently goes 3 months
or more without seizures, but must go as long as 36 months
before reaching this same 5% level of probability. There-
fore, in either case, the probability of experiencing a
seizure-free period up to three times longer than the average
underlying interseizure interval is approximately 5%.

With these considerations in mind, we are in a position to
understand the literal meaning of the Classical Rule of
Three. Suppose that, after starting a new medication, a
patient has gone for a certain amount of time, t, without sei-
zures. It is useful to state the rule in two different ways:
1 To be reasonably confident that a patient’s seizure rate

has been reduced, one must wait at least three times
longer than the preintervention interseizure interval.

2 After t months without seizures, the maximum plausible
underlying seizure rate, r* that is, the maximum average
rate of seizures we can reasonably expect in the future, is
3/t.
In other words, when a patient has been seizure-free for

three times their average preintervention interseizure inter-
val, the most that we can say with confidence is that their
seizure frequency has likely been reduced, although perhaps
by only a small amount, a statement far short of the declara-
tion that one has become ‘‘seizure-free.’’ Stated plainly in
these terms, we see that the Classical Rule of Three is
unsuitable for evaluating postintervention seizure freedom.
The view expressed in statement 1 above is exceedingly
conservative, and thus not especially helpful. A patient who
previously had monthly seizures and proceeds for
3.1 months after starting a new AED without a single sei-
zure will find little comfort in the idea that it is now reason-
able to believe that the underlying seizure rate is probably
slightly <1 seizure per month. Rather, the patient wants to
know to what degree this new data—the fact that a much
longer than usual seizure-free period has transpired—
suggests that seizure freedom will, in fact, persist.

We can also see the unsuitability of the Classical Rule
of Three using statement 2. Rather than addressing how
long to wait before inferring a reduction in seizure rate,
statement 2 can instead be used to address the more
directly meaningful question of how long one must wait
before the probability of future seizure freedom reaches
some acceptably high level of confidence. Let us take the
worst case rate cited by the rule, r*, and imagine using this
estimate to counsel patients regarding the question: ‘‘How
long after an intervention must I remain seizure-free
before the probability of remaining seizure-free for at least
1 year thereafter reaches 95%?’’ To answer this, we first
note that, taking the seizure rate to be r*, the probability of
having no seizures in the subsequent 12 months is
Pr ðN ðtÞ ¼ 0jr�Þ ¼ Pr ðDt>12jr�Þ ¼ e�12r

�
; therefore,

the probability of having one or more seizures in the next
12 months is simply 1)e)12r*. Table 1 shows these worst
case seizure rate estimates according to the Classical Rule

of Three—calculated for seizure-free durations of various
lengths—together with the consequent probability of having
zero seizures in the following year. After 6 months of sei-
zure freedom, the Classical Rule of Three still allows a
�40% chance of having a seizure in the next year. Obtain-
ing a >95% assurance of remaining seizure-free during the
next year requires, by this logic, first remaining seizure-free
for at least 5 years.

Clearly, the Classical Rule of Three does not lend itself to
use as a practical guideline for determination of seizure free-
dom in any obvious or natural sense. Indeed, in proposing
its definition of seizure freedom, the ILAE task force (Kwan
et al., 2009) specifically points out these limitations of the
Classical Rule of Three, and characterizes the proposed
definition of seizure freedom as a practical compromise,
inspired by but adhering only loosely to the logic of the
Classical Rule of Three (words in brackets added for clarifi-
cation):

To be 95% certain that a patient’s seizure frequency has at
very least decreased (i.e., there has been some therapeutic
effect), a seizure-free duration that is at least three times the
longest interseizure interval prior to starting a new interven-
tion would need to be observed. It should be noted that, in
theory [i.e., according to the Classical Rule of Three],
patients with even more infrequent seizures would have to
be followed up for many years to determine whether their
seizures had truly come under control. This is not practical,
either in research or clinical settings. For this reason we rec-
ommend that three times the longest interseizure interval be
used as an indicator of positive treatment response [i.e., sei-
zure freedom].

Given that patients and physicians are interested in
knowing whether an intervention has resulted in seizure
freedom rather than just a decreased rate of seizures, a
theoretical framework other than that underlying the
Classical Rule of Three is apparently needed. Fortu-
nately, as we will see next, a more practical version of
the Classical Rule of Three, consistent with the intended
purposes of the definition proposed by the ILAE task
force, can be derived from a few reasonable assumptions

Table 1. Probability of being seizure-free over the

next year according to the Rule of Three

Duration of

seizure freedom

(months)

Estimate of maximum

seizure rate

(1 seizure/no. of months)

Probability of no

seizure in next

year (%)

6 1/2 60.7

12 1/4 77.9

18 1/6 84.7

24 1/8 88.3

36 1/12 92.0

48 1/16 93.9

60 1/20 95.1
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combined with a principled probabilistic consideration of
the problem, using a straightforward application of Ba-
yes’ rule. We shall see that this rule supports the ILAE
tasks force’s proposed pragmatic adaptation of the Clas-
sical Rule of Three in many important cases of interest,
although in other important cases a larger multiple (up
to six) of the interseizure interval may be required, hence
we call our proposed generalization the ‘‘Rule of Three-
to-Six.’’

Bayesian formulation of a rule of three (to six) for
seizure freedom

An essential ingredient missing from the preceding discus-
sion of the Classical Rule of Three is information regarding
the a priori probability of seizure freedom conferred by an
intervention at the time it is recommended, before any obser-
vation period has passed. The omission of this ‘‘prior’’ infor-
mation is the root cause of the unreasonably long wait times
required by the literal interpretation of the Classical Rule of
Three. In other words, ‘‘letting the data speak for itself,’’ bas-
ing a judgment of seizure freedom solely on the period of
observation without seizures, results in longer wait times
than clinical experience or clinical epilepsy research sug-
gests is generally necessary. A more principled approach
would be to combine statistical information regarding
general rates of seizure freedom from published research
studies (i.e., pretest probability of seizure freedom) with the
patient-specific data at hand (i.e., time gone without seizures
since intervention) to decide when to proclaim seizure
freedom.

This needed fusion of probabilistic information is accom-
plished by means of Bayes’ rule (Jaynes & Bretthorst, 2003;
Newman & Kohn, 2009; Westover et al., 2011). In mathe-
matical notation, Bayes’ rule as applied to the case at hand is
expressed as

PrðrjNðtÞ¼0Þ¼PrðrjDt>tÞ¼PrðrÞPrðDt>tjrÞ
Z

¼PrðrÞe
�rt

Z

Translated from mathematical notation, this equation can
be interpreted as follows. After an intervention (e.g., starting
a medication), the probability distribution over the possible
seizure rates, r, given that no seizures have occurred so far
after t months of observation, is obtained by multiplying
two factors together: (1) the ‘‘pretest’’ or prior probability
distribution, Pr (r) (i.e., the distribution of rates, based on
known efficacy data, that could have been quoted to the
patient at the time of the intervention based on efficacy
data), and (2) the likelihood function, which gives the proba-
bility of having no seizures over a period of t months when
the patient’s underlying rate seizure rate is assumed to be r,
Pr ðN ðtÞ ¼ 0jr; tÞ ¼ Pr ðDt> tjrÞ¼ e�rt. The additional
factor in the denominator, Z, is simply a normalization con-
stant which ensures that the total probability (area under the
distribution) is equal to one.

Model 1: all-or-none response distribution
Once we understand how Bayes’ rule can be

employed for this application, we must decide how to
model the pretest probability of becoming seizure-free.
For illustration purposes, we focus first on the case
of medication-naive adult patients with epilepsy
undergoing a first trial of AED therapy. In such cases,
epileptologists commonly counsel patients that roughly
50–65% of patients will become seizure-free, whereas
the remaining 35–50% will ‘‘not respond,’’ figures based
largely on the influential work of Kwan & Brodie,
(2000, 2001). Although these studies defined seizure
freedom over a limited observational window, it is
nevertheless instructive to examine the simple mathe-
matical model that follows if we take these statistics
literally. Therefore, let us assume simplistically that, a
priori, initiating a new AED confers a 65% probability
of becoming seizure-free, that is, of effectively setting
the patient’s underlying seizure rate to zero, while the
remaining 35% of patients experience no change in their
underlying seizure rate. In this case, the prior probabil-
ity distribution Pr (r) is a simple two-bin histogram with
values Pr ðr ¼ 0Þ ¼ 65%, and Pr ðr¼ r0Þ ¼ 35%,
where r0 denotes the preintervention seizure rate. The
challenge then becomes determining into which of these
two groups the patient has landed after starting a new
medication. Although the distinction cannot immediately
be made—since absence of seizures can happen in
either case for some time—seizure freedom becomes
progressively less likely with the passage of time for
‘‘nonresponders.’’ How long must one wait within this
framework before the certainty that seizure freedom has
been achieved exceeds 95%?

This question can be answered by straightforward appli-
cation of Bayes’ rule. We wish to calculate the probability
of seizure freedom (i.e., that the seizure rate has dropped to
zero) as a function of both the duration of seizure freedom
since starting a medication, t, and the preintervention
seizure rate, r0. This is:

Pr ðr¼ 0ÞPrðNðtÞjr ¼ 0Þ=
½Pr ðr¼ 0ÞPr ðN ðtÞ¼ 0jr¼ 0Þþ
Pr ðr¼ r0ÞPr ðN ðtÞ¼ 0jr¼ r0Þ�:

Substituting Pr ðr ¼ 0Þ ¼ 0:65, Pr ðr¼ r0Þ ¼ 0:35, and
Pr ðN ðtÞ ¼ 0jr ¼ 0Þ ¼ 1, we arrive at:

Pr ðr ¼ 0jNðtÞ ¼ 0Þ ¼ 0:65

0:65 þ 0:35e�r0t

Finally, let us rescale the time axis by the patient’s prein-
tervention seizure rate by defining s = r0t, in which case we
have simply
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Pr ðr¼ 0jN ðtÞ ¼ 0Þ ¼ 0:65

0:65 þ 0:35e�s

This equation states that the probability of having zero
seizures declines with time relative to the duration of the
patient’s typical preintervention interseizure interval. Stated
another way, patients with longer interseizure intervals prior
to AED therapy must wait longer after beginning AEDs to
be confident that they have achieved seizure freedom. This
probability function is illustrated in Fig. 3, from which we
see that, under this model, waiting three times the preinter-
vention interseizure interval is sufficient to provide a >95%
confidence of seizure freedom. In fact, as Fig. 3 shows,
waiting three times the preintervention interseizure interval
still offers 95% probability of future seizure freedom even
when the a priori probability of becoming seizure-free upon
starting a new medication is decreased to 50%. This simpli-
fied model thus provides a rough justification for a ‘‘Bayes-
ian’’ Rule of Three.

It is natural to ask how the determination of seizure free-
dom must be modified under this simple model when the a
priori probability of attaining seizure freedom from an inter-
vention falls well below the 50–65% range considered
above. For example, many patients encountered in epilepsy

specialty clinics have already ‘‘failed’’ one or more previous
AEDs. In these cases, the odds of achieving seizure freedom
from additional AED trials are generally estimated at
5–10% (Kwan & Brodie, 2000). Similarly, patients with
nonlesional or multifocal epilepsy considering epilepsy sur-
gery typically face odds considerably worse than the oft-
cited up-to-80% probability of seizure freedom for favor-
ably-selected lesional cases (McIntosh et al., 2001).
Although many patients can indeed ultimately be declared
seizure-free after these interventions, given the less favor-
able initial odds we expect that a longer period of observa-
tion will be necessary. This intuition can be made precise
within the modeling framework above by substituting into
the last formula a generic pretest probability, a, and solving
for the number of preintervention interseizure intervals that
must pass before reaching 95% probability of seizure free-
dom, that is, by solving the following for the value of s:

0:95 ¼ a
aþð1� aÞ e�s

The resulting relationship between the pretest probability
a and the required observation period s(a) is plotted in
Fig. 4. From this plot we see that when the preintervention

Figure 3.

Illustration of Model 1 (see text). Plot of the probability, as a

function of time gone without seizures since starting medica-

tion, of belonging to the group of ‘‘responders’’ who com-

pletely stop having seizures after initiating AED medication.

The time axis is given in units of preintervention average inter-

seizure interval (the reciprocal of the preintervention rate).

The solid and dashed lines show the probability of seizure free-

dom assuming a priori probabilities of seizure freedom of 65%

and 50%, respectively. In both cases, waiting three times the

preintervention interseizure interval is sufficient to achieve

>95% confidence of seizure freedom.

Epilepsia ILAE

Figure 4.

Relationship between the a priori probability that an interven-

tion will render a patient seizure-free, a (horizontal axis), and

the required seizure-free observation period before one the

probability of future seizure freedom reaches 95%, according

to Model 1 (see main text). The required waiting time is

expressed in units equal to the mean preintervention intersei-

zure interval. When the prior probability of seizure freedom is

>50%, three interseizure intervals is sufficient, and in fact for

a = 80%, waiting approximately 1.5 intervals will theoretically

suffice. By contrast, when the prior probability of success is

<50%, a larger number of observation intervals is required,

reaching roughly six intervals when a drops to 5%.
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probability of seizure freedom is 5–10%, the required wait-
ing time ranges from roughly five to slightly <6 times the
average preintervention interseizure interval.

Hence, the rule governing the required waiting time
before declaring seizure freedom, which we may call the
‘‘Rule of Three-To-Six,’’ can be stated as follows: When the
a priori probability that an intervention will confer seizure
freedom is >50%, then an observation period three times the
typical preintervention interseizure interval is sufficient to
achieve >95% certainty that the patient will remain seizure-
free, whereas when the a priori probability of success is
less, a longer waiting time (up to six times the typical

preintervention interseizure interval when the prior proba-
bility of success drops to 5%) is required.

Model 2: continuous but bimodal response distribution
Although the model just considered is unrealistic in its

binary division of patients into either completely seizure-
free ‘‘responders’’ or complete ‘‘nonresponders’’ experienc-
ing no change in seizure activity whatsoever, qualitatively
more realistic versions of the same basic model yield gener-
ally similar conclusions, thus supporting the basic idea of
the Rule of Three-To-Six. We again focus for illustration on
the case of determining seizure freedom in adult epilepsy

A

B

Figure 5.

Illustration for ‘‘Model 2: Continuous but bimodal response distribution.’’ (A) The top left panel shows the expected long-term popu-

lation-level distribution of seizure rates among patients whose initial seizure rates are clustered around one seizure per month. This

distribution serves as the prior probability distribution over postintervention seizure rates, P (r). To apply Bayes’ rule, this distribu-

tion is multiplied by the likelihood function, Pr ðN ðtÞ¼ 0jrÞ, shown in the upper right hand panel for seizure-free observation period

of t = 2 months, and a renormalization of the distribution to ensure a total probability mass equal to one, resulting in the postobser-

vation probability distribution Pr ðrjN ðtÞ¼ 0Þ, shown in the bottom panel in A. As shown, this multiplication and renormalization

results in a very significant ‘‘damping down’’ of the probability of remaining in the ‘‘nonresponder’’ group. (B) Illustration of how the

postobservation probability distribution over seizure rates evolves over time. Three discrete time points are shown, equal to 1, 2, and

3 months.
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patients who have not failed previous therapies. An example
of a more realistic modified model is illustrated in Fig. 5,
where the prior probability Pr (r) is represented not as a bin-
ary histogram, but rather as a continuous distribution. The
distribution has two modes: (1) one mode that is centered
around the preintervention seizure rate with some spread
around the mean value to represent uncertainty regarding
the precise seizure rate as well as the possibility that seizure
rates in ‘‘nonresponders’’ may change slightly after treat-
ment; (2) and another mode that is concentrated near a sei-
zure rate of zero but also includes some spread to account
for those patients who ‘‘significantly improve’’ but never-
theless continue to have seizures at a nonzero rate. For sim-
plicity, we do not attempt to model the fact that in some
patients seizure freedom may require additional, adjunctive
medications—these may be considered together as a single
intervention in the present model. In Fig. 4, the ‘‘responder’’
mode was chosen such that 65% of the total probability lies
beneath it—representing the�65% of patients who respond
to AED therapy—whereas the remaining probability mass
lies beneath the second mode—representing the �35% of
patients who do not respond to AED therapy.

We combine this model of the pretest probability, Pr (r),
with the Poisson seizure rate model, Pr ðN ðtÞ¼ 0jrÞ¼ e�rt,
via Bayes’ rule, that is, by multiplying these together and
then normalizing (dividing by the total area under the curve
to ensure that the total probability is equal to 1). The result
is illustrated in Fig. 5B for a patient with a preintervention
seizure rate of one seizure per month, after a seizure-free
observation period lasting 2 months. We see that multiply-
ing by the exponentially decaying curve (the likelihood
function) has the effect of dampening the probability that
the patient belongs to the ‘‘nonresponder’’ group and ampli-
fying the possibility that the patient is a ‘‘responder.’’ The
effect of continued observation over time is illustrated in
Fig. 5C. We see that, qualitatively, after being seizure-free
for approximately three times the patient’s preintervention
interseizure interval, the probability of belonging to the non-
responder group drops nearly to zero. This, again, is in
agreement with the general operational concept of the ILAE
task force’s proposed pragmatic adaptation of the Classical
Rule of Three, although justified on different grounds than
those from which the Classical Rule of Three was originally
derived. Unsurprisingly, for cases in which the preinterven-
tion probability of success is lower, similar calculations
show that, as above in the analogous analysis of the simpler
‘‘all or none’’ (Model 1), longer waiting times are required.

Discussion

The question of how to determine what constitutes an
adequate period without seizures before a patient can be
presumed seizure-free after an intervention is frequently
encountered in clinical practice and has important implica-
tions not only for patient management (e.g., when should

patients feel secure returning to high-risk work environ-
ments?), but also potentially for public policy (e.g., when
can patients safely be allowed to drive?). Current laws
require a patient to be seizure-free anywhere from
3 months to 1 year before they can legally drive, irrespec-
tive of the patient’s underlying seizure rate. Specifying an
arbitrary duration of seizure freedom without considering
the variation in seizure rates or a priori probability of an
intervention’s success rate may require some patients to
wait longer than necessary before driving and allow others
to return to driving before it is safe to do so. Many physi-
cians counsel newly diagnosed patients with epilepsy
based on data regarding a priori probabilities of rates of
seizure remission, for example, the ‘‘rule’’ that, a priori,
approximately 50–65% of newly diagnosed, medication-
naive adult epilepsy patients become seizure-free upon
starting medication, whereas 35–50% of remain refractory.
The corresponding probabilities for patients who have
failed one to two previous medications are closer to 5–
10% (Kwan & Brodie, 2000, 2001); for surgery the proba-
bility of success reaches as high as 80% to much lower
depending on identifiable risk factors (McIntosh et al.,
2001).

Beyond these figures, some guidance regarding how
long to wait before identifying a patient as belonging to the
‘‘seizure-free’’ outcome group comes from the recent rec-
ommendation of the ILAE task force, which proposes to
declare that seizure freedom has been achieved when there
is ‘‘freedom from all types of seizures for 12 months or
three times the pre-intervention inter-seizure interval,
whichever is longer’’ (Kwan et al., 2009). This definition
of seizure freedom represents a practical adaptation rather
than a rigorous consequence of the Classical Rule of Three
(Hanley & Lippman-Hand, 1983; Jovanovic & Levy,
1997), strict application of which may require waiting
much longer than the recommended interval before
patients can be reasonably declared ‘‘seizure-free.’’

Nevertheless, we have also seen how a rule in the spirit of
that proposed by the ILAE task force can be placed on a
solid theoretical foundation using straightforward consider-
ations from probability theory. More specifically, we have
shown how Bayes’ rule can be used to combine data regard-
ing the a priori probability of responding to an intervention
with patient-specific data regarding how long a patient has
remained seizure-free so far after an intervention to estimate
the probability that the patient will remain seizure-free
thereafter. In its simplest form, explored in Model 1, this
probabilistic framework suggests adopting a modification
of the rule proposed by the ILAE task force, which we call
the ‘‘Rule of Three-To-Six’’: Future seizure freedom can be
inferred after an observation period of three times the aver-
age preintervention interseizure interval so long as the
preintervention probability of success exceeds 50%,
whereas up to six times may be required when the preinter-
vention probability of success drops as low as 5%.
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As briefly explored in Model 2, by modeling the relevant
a priori intervention response probabilities, the Bayesian
approach used herein can also be adapted to guide determi-
nation of response to medication conceptualized in more
complex ways (e.g., a ‘‘meaningful improvement,’’ such as
>50% reduction of seizure frequency rather than a strictly
complete cessation of seizures).

It should be borne in mind that the models explored here
contain simplifying assumptions that may not be applicable
in certain cases. First, our model treats seizure recurrences
as random events. This is a reasonable way to model seizure
occurrences where the underlying provocative factors are
unknown (i.e., for seizures that seem to occur ‘‘out of the
clear blue’’), or unpredictable (e.g., minor illnesses or other
unforeseeable stressors), but probably does not appropri-
ately model systematic effects under a patient’s control,
such as medication noncompliance or unfavorable lifestyle
choices. Second, some patients with epilepsy exhibit either
strongly nonrandom tendencies, as in epilepsy, which varies
catamenially. Such patterns violate the basic assumption of
our analysis that seizure activity follows a constant-rate
(Poisson) random process model. Third, between the
random and strictly predictable cases lie cases in which sei-
zures show a greater or lesser degree of clustering. In cases
where prominent temporal clustering occurs, our analysis
may still be reasonably applied if all seizures within a dis-
tinct cluster are considered as a single ‘‘event.’’ In cases of
weaker clustering, where the boundaries between clusters
are indistinct, the basic analysis may still be reasonably
applied, although with minor modifications. More specifi-
cally, intermediate levels of clustering lead to modest
increases in the period of observation required by the Rule
of Three-To-Six (see Supporting Information). Fourth, the
appropriate a priori probability of seizure freedom, an
essential ingredient in the Rule of Three-To-Six, can be only
loosely approximated from the current literature surround-
ing AED efficacy, which often treats response to antiseizure
interventions as an ‘‘all or none’’ phenomenon. The devel-
opment of richer, more patient-specific methods for predict-
ing response to epilepsy interventions thus remains an area
where further research is needed.

These limitations notwithstanding, to the extent that—as
pointed out by the ILAE task force in quoting Voltaire—
‘‘the perfect is the enemy of the good,’’ the Rule of Three-
To-Six proposed herein provides reasonable practical
guidance for evaluating seizure freedom in response to phar-
macologic, surgical, and other interventions.
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